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Applications of generating functions to 
polymerization kinetics. 3. 

General procedure illustrated for propagation 
with monomer conversion 

Kevin W. McLaughl in  i and Craig M. Bertolucci 

Department of Chemistry, University of Southern Indiana, 8600 University Boulevard, 
Evansville, IN47712, USA 

The derivation of the product distribution function for the catalytic polymerization mechan- 
ism involving propagation with monomer conversion is used to illustrate the general procedure 
for obtaining the exact discrete distribution arising from a polymerization mechanism. The 

' coupled differential equations arising from the polymerization mechanism are integrated using 
a generating function substitution. Due to the stepwise growth of polymer chains, this 
approach is generally applicable to problems in polymerization kinetics. The integrated rate 
law for the mechanism under consideration is similar to the Poisson distribution, except for a 
time dependent parameter which suppresses chain growth as time passes. This distribution 
function has a limiting value as time approaches infinity determined by the ratio of initial 
monomer and catalyst. The number-average and weight-average degrees of polymerization are 
also derived using an elementary technique involving generating functions. Catalytic polymeri- 
zations frequently give rise to chemical kinetics problems which are difficult to solve due to dif- 
ficulty in integrating the coupled rate equations. The procedures outlined in this paper permit 
these problems to be overcome in many cases. 

1. Introduct ion  

M a n  made  polymers are not  synthesized as a single molecular species, but rather  
as a distr ibution of  structurally related molecules. A specific product  distribution 
is obtained for a given polymerizat ion mechanism and set of  reaction conditions. 
The relationship between the product  distribution and the reaction mechanism is a 
typical chemical kinetics problem. Since the product  distribution plays a major  

r o l e  in controll ing the physical properties of  a polymer, controlling the product  dis- 
t r ibut ion is o f  considerable industrial importance. 

In spite of  the importance of  the product  distribution in polymer chemistry, a 

1 To whom correspondence should be addressed. 

© J.C. Baltzer AG, Science Publishers 



72 K. IV. ~#cLaughlin, C.M. Bertolucci / Generating functions in polymerization kinetics 

general approach to deriving such distributions from a polymerization mechanism 
is missing even in advanced texts in chemical kinetics and polymer chemistry [1- 
5]. The only product distributions which are derived are the Poisson distribution 
for "living" polymers, and the Schulz-Flory distribution for condensation poly- 
merizations [1-3]. The procedure for obtaining each is usually the one originally 
employed by Flory and is not generally applicable to any other type of mechanistic 
scheme [6]. In fact, the procedure for deriving the Poisson distribution requires 
the concentration of the reactants be held constant, a condition not usually encoun- 
tered in the laboratory. In the field of catalytic polymerizations (e.g., ionic and 
Ziegler-Natta catalyzed polymerization of alkenes) the polymerization mechan- 
ism can involve several steps which influence the product distribution [7,8]. The 
reaction conditions also introduce factors which are known to modify the product 
distribution [9-13]. It is very rare to see any of these factors included in a polymeri- 
zation kinetics study, which starts from a mechanistic scheme and leads to the pro- 
duct distribution [7,8]. Clearly, polymerization reactions are an important class of 
reactions which provide a set of mathematical problems which has retarded the 
advancement of this field of chemical kinetics [14,15]. 

The simplest polymerization mechanism involves propagation only. To illus- 
trate the general procedure for solving chemical kinetics problems for polymeriza- 
tion reactions, the problem of propagation with concomitant conversion of 
reactant into polymer is treated. When a fully activated catalyst is exposed to a 
polymerizable reactant, called a monomer, the reactants add one at a time to the 
growing polymer chain attached to the catalyst. In the absence of any elimination, 
transfer or termination reactions, the polymer chain continues to grow until the 
monomer is completely consumed or the reaction mixture is quenched by some spe- 
cies which almost instantly interrupts the catalytic cycle. The chemical kinetics of 
this type of reaction can be tracked by following the disappearance of the monomer 
or the formation of the distribution of polymer molecules. The latter data provide 
a much richer source of information for testing a proposed reaction mechanism 
and is vital to controlling the physical properties of the polymer. 

The product distribution function, for the catalytic polymerization of a mono- 
mer by a fully activated catalyst, involving propagation only and with a constant 
concentration of monomer was first solved by Flory [16]. The product distribution 
function for this one case of a "living" polymerization was found to be the Poisson 
distribution 

Ai  = Foe  -kM' (kMt) i  
i! ' 

where Ai is the number of polymer chains composed of i monomers, the number 
of monomers is designated by M, F0 is the number of catalyst sites, the rate con- 
stant for propagation is given by k, and t represents the polymerization time. The 
basic mechanism for this reaction is shown in scheme 1. 
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Scheme 1. 

For a constant reaction volume, the terms M and Ai may be defined as the concen- 
tration of monomer and growing polymer chains composed of i monomers, respec- 
tively. The rate constant k is assumed to be independent of chain length. Though 
this assumption is commonly made for polymerization reactions, it is not necessary 
using the procedure outlined in this paper. 

A more general procedure for obtaining the product distribution function for 
this mechanism was published in 1963, using a technique from control systems 
called the Z-transform [17]. This was simply a method involving generating func- 
tions taken from combinatorics and applied to a series of coupled differential equa- 
tions [7,15]. The set of reactions given in scheme 1 gives rise to the following series 
of differential equations: 

dA0 
= - k M A o ,  

dt 
dA1 

- k M A o  - k M A 1 ,  
dt 

dAi 
- k MAi _ l  - k M A i .  (2) 

dt 

The general form of this differential equation is given by the recursion formula 
shown for the ith case. This paper describes the derivation of the simple, but pre- 
viously unreported procedure for obtaining the product distribution function and 
its averages when the monomer concentration decreases as polymer is formed, as it 
would under most realistic reaction conditions, for the elementary mechanism gov- 
erning "living" polymerizations [1]. 

2. Dis tr ibut ion  funct ion  

In order to integrate the series of coupled differential equations arising from 
scheme 1, it is convenient to define the following generating function: 
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c y o  

F = ~ AiY i . (3) 
i=0 

The time derivative o f F  yields an expression involving dAi/dt, 

dF ~ ( d A i )  yi. 
d r =  i=0 ~ (4) 

Using the expression for dAi/dt resulting from eq. (2) gives rise to the following 
equation: 

o o  (3o 

d E _  _ k M Y  Z Ai-1 yi-1 _ k M  Z a i y i  . (5) 
dt i=0 i=0 

Since M is decreasing with time according to the simple rate equation shown in 
eq. (6), 

dM 
d~ - kMro , (6) 

eq. (6) must be integrated, 

M = Mo e -kF°t (7) 

and the resulting function for M substituted into eq. (5). Note that M0 is the concen- 
tration of monomer at t = 0. Substituting F back into eq. (5), as well, yields the fol- 
lowing, elementary integral: 

j!F FdE  f0 t F0 F = ( Y -  1)kM0 e-kF°/dt. (8) 

Upon integration, F is found to be defined in terms of kinetic parameters and Y, 

(Mo(1--e-kF°t)(1--Y))  (9) F = F0 exp - -if0-0 

Fo is the value o f F  at t = 0, which is required by the reaction conditions to also be 
the total catalyst concentration. Expanding eq. (9) into a power series of Y leads 
to an expression possessing the same form as the original generating function, 

~=o (F° e-QQi) F= ~ . yi, (10) 

where 

Q = -ff0-0M° (1 - e - k F ° t )  . (11) 

A term-by-term comparison ofeqs. (3) and (10) gives the product distribution func- 
tion for a catalytic polymerization when the monomer concentration decreases 
due to conversion, 
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Oi 
Ai = F0 e-Q-~-. (12) 

Note that eq. (11) is a Poisson distribution with a time dependent function Q in 
place ofkMt in eq. (1). Fig. 1 illustrates how the product distribution arising from 
eq. (11) is similar to that of eq. (1) except for the slower rate of growth at longer 
polymerization times. In fact, eqs. (11) and (12) represent the general form of the 
Poisson distribution originally derived by Flory for the special case of Q being a 
constant. 

3. Average molecular weight functions 

The number-average and weight-average molecular weights of a polymer are 
obtained by multiplying the number-average (Xn) and weight-average (Xw) degree 
of polymerizations by the molecular weight of the repeat unit and correcting for 
the end-groups when they are present. These average degrees of polymerization are 
defined as follows: 

X n -: ~ iA i ~ A i (13) 
i=0 / i=0 

and 
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Fig. 1. The product distribution functions at three polymerization times are shown for the case of  pro- 
pagation with conversion ( -  - - ) ,  and with monomer held constant ( ), for k = 1, F0 = 1 and 

M0 = 300. 
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Xw = i2Ai iAi. (14) 
i=0 

The sums can be carried out from i = 1 to ee by simply subtracting out the first 
term of the series, if that is desired. Three sums are necessary to evaluate these two 
important molecular parameters: y~ Ai, Y~ iAi, and ~ i2Ai. These sums are readily 
obtained from the definition of the generating function by taking the derivative of 
F with respect to Y, multiplying by Y, and then repeating the process, followed by 
letting Y equal one, 

o o  o o  

F =  ~-~ A i y i  = ~-~ Ai ,  ( 1 5 )  

i=0 i=0 

( d ) ~-~ 
Y - ~  F = i A i Y  i = iAi,  (16) 

i=0 i=0 

F = i2Ai Yi = i2Ai. (17) 
i=0 i=0 

Since F was obtained as a function of kinetic parameters and Y (eq. (9)). Xn and 
Xw may be obtained by substituting the expression for F from eq. (9) directly into 
eqs. (15)-(17) and the subsequent results directly into eqs. (13) and (14), 

M0 (1 - e  -kF°t) (18) z n  - -  ° 

and 

Mo (1 - e -kF°') (19) 
Xw = 1 +-ff~-0, 

The so-called polydispersity index X w / X ,  is given by 

( )' X W _ l +  M 0 ( l _ e  -kr°t) (20) 
Z -  TOO 

The time dependent behavior of these averages for the chain length of the polymer 
are illustrated in fig. 2. 

4. Conclusions 

A general procedure for deriving the product distribution and molecular weight 
averages for catalytic polymerizations has been applied to the case of propagation 
with monomer conversion. This simple result clearly illustrates the method for 
deriving product distributions directly from a polymerization mechanism. The 
resulting distribution function is a Poisson distribution which slows its rate of 
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Fig. 2. The number-average chain length (Xn) is shown for (A) the case of  monomer  concentrat ion 
held constant  at M/Fo = 100, (B) the case for Mo/Fo = 100, and (C) the case for Mo/Fo = 50; in all 

three cases k = 1. 

growth as a time dependent function of monomer concentration. The limiting num- 
ber-average degree of polymerization (i.e. the average number of monomers per 
chain) is set by the initial ratio of monomer to catalyst. This more realistic and 
more general case approaches as a limiting case the original product distribution 
function derived by Flory [16]. 

The ability to quantitatively analyze and experimentally test the product distri- 
bution for a given polymerization mechanism requires a knowledge of the distribu- 
tion function. The procedure necessary to solve these types of problems to obtain 
a product distribution from a polymerization mechanism is as follows: 

(1) write down the general form of the rate equation from the reaction mechanism, 
(2) define the necessary generating function(s), 
(3) substitute the rate equation into the time derivative of the generating function, 
(4) integrate with respect to the generating function, 
(5) expand the integrated rate law with respect to the variable Y, 
(6) obtain the distribution by a term-by-term comparison with the original gener- 

ating function. 
The easiest way of checking the validity of a proposed mechanism is by a graphi- 

cal companson of the experimental and theoretically predicted product distribu- 
tions. In the simple case treated here, the rate at which the Poisson distribution 
shifts to higher molecular weights can now be quantitatively checked. 

Perhaps the most important application of the results obtained here is in the ana- 
lysis of more complex mechanisms, particularly those associated with Ziegler- 
Natta catalysis. For any reaction in which the catalyst is fully activated at the time 
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polymerizat ion starts, the growing polymer chains which have yet to terminate or 
transfer must  obey the product  distribution function reported here. The applica- 
tion o f  this procedure  to more  complex mechanisms, use of  the general form of  the 
Poisson distr ibution to these systems, and their compar ison to experimental  
results is currently under investigation. 
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